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Abstract 

Background: Cortical deposition of β-amyloid (Aβ) plaque is one of the main hallmarks of Alzheimer’s disease (AD). 
While Aβ positivity has been the main concern so far, predicting whether Aβ (−) individuals will convert to Aβ (+) has 
become crucial in clinical and research aspects. In this study, we aimed to develop a classifier that predicts the conver-
sion from Aβ (−) to Aβ (+) using artificial intelligence.

Methods: Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort regarding 
patients who were initially Aβ (−). We developed an artificial neural network-based classifier with baseline age, 
gender, APOE ε4 genotype, and global and regional standardized uptake value ratios (SUVRs) from positron emission 
tomography. Ten times repeated 10-fold cross-validation was performed for model measurement, and the feature 
importance was assessed. To validate the prediction model, we recruited subjects at the Samsung Medical Center 
(SMC).

Results: A total of 229 participants (53 converters) from the ADNI dataset and a total of 40 subjects (10 converters) 
from the SMC dataset were included. The average area under the receiver operating characteristic values of three 
developed models are as follows: Model 1 (age, gender, APOE ε4) of 0.674, Model 2 (age, gender, APOE ε4, global 
SUVR) of 0.814, and Model 3 (age, gender, APOE ε4, global and regional SUVR) of 0.841. External validation result 
showed an AUROC of 0.900.

Conclusion: We developed prediction models regarding Aβ positivity conversion. With the growing recognition of 
the need for earlier intervention in AD, the results of this study are expected to contribute to the screening of early 
treatment candidates.
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Background
The aggregation of β-amyloid (Aβ) peptides into amy-
loid plaques is one of the main hallmarks of Alzhei-
mer’s disease (AD). The amyloid cascade hypothesis 
postulates that the accumulation of Aβ plaques initi-
ates the AD pathologic cascade, which triggers the 
formation of neurofibrillary tangles and neurodegen-
eration [1, 2]. Consistent with the amyloid cascade 
hypothesis, recent evidence with in  vivo molecular 
imaging has underlined the association of elevated lev-
els of Aβ with accelerated tau accumulation, cortical 
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atrophy, and cognitive decline in cognitively normal 
(CN) individuals [3–5]. Furthermore, studies have 
demonstrated that increased Aβ accumulation could 
initiate decades prior to the onset of clinical manifes-
tations [6].

Therapeutic trials have developed anti-amyloid 
treatments for AD individuals with mild dementia or 
predementia, aiming to reduce Aβ accumulation and 
prevent cognitive decline. However, despite measur-
able Aβ reduction, most trials did not show statistical 
significance in preventing cognitive decline [7–10]. 
This might be related to the fact that interventions 
may have been administered too late in the disease 
progression to exhibit clinical efficacy. Consequently, 
the concept of primary prevention approaches has 
emerged. That is, we may need to consider using 
anti-amyloid therapy in individuals with subthreshold 
Aβ levels who could convert to Aβ (+) in the future. 
In fact, a recent study showed that relatively high Aβ 
levels even in the subthreshold at baseline predicted 
memory decline and conversion to Aβ (+) status in a 
subset of Aβ (−) individuals [11]. Accordingly, while 
Aβ (−) individuals are relatively less focused on both 
clinical and research-related aspects of AD, the ques-
tion—“Will this person become Aβ (+) in the near 
future?”—remains crucial.

Performing primary prevention trials with anti-amy-
loid agents in subthreshold individuals who are likely 
to convert to Aβ (+) status could be clinically benefi-
cial. However, it is difficult to identify individuals who 
are appropriate subjects for the trial. To the best of 
our knowledge, no classifiers that predict subthresh-
old individuals who are likely to convert to Aβ (+) sta-
tus have been developed yet. However, several factors, 
including age, apolipoprotein E (APOE) ε4 allele, and 
family history, are associated with elevated Aβ levels 
[12–14]. Individuals with higher Aβ levels, even in the 
subthreshold at baseline, are more likely to convert to 
Aβ (+) status in the future. Furthermore, recent find-
ings revealed a focal Aβ elevation in specific brain 
regions of the Aβ (−) individuals who subsequently 
converted to Aβ (+) status [15]. Thus, classifiers com-
bining these factors may help identify subjects for the 
primary prevention trial.

In this study, we aimed to develop a classifier that 
predicts the patient status conversion from Aβ (−) to 
Aβ (+) using artificial intelligence. We hypothesized 
that a combination of age, gender, APOE ε4 genotype, 
family history, and global and regional Aβ uptake could 
be associated with conversion. We used an artificial 
neural network (ANN) model  that considered differ-
ent combinations of features to predict the conversion 
from Aβ (−) to Aβ (+).

Methods
Participants
Data used in this study were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) cohort. 
ADNI was launched in 2003 to test whether serial 
magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and 
clinical and neuropsychological assessments could 
be combined to measure the progression of mild cog-
nitive impairment and the early onset of AD. Inclu-
sion and exclusion criteria, clinical and neuroimaging 
protocols, and other information about ADNI can be 
found at www. adni- info. org. Demographic information, 
raw neuroimaging scan data, APOE ε4 genotype, and 
clinical information are publicly available and can be 
downloaded from the ADNI data repository (www. loni. 
usc. edu/ ADNI/). To develop our prediction models, 
subjects who underwent longitudinal 18F-florbetapir 
(AV45) PET tests with a total follow-up duration longer 
than 6 months were selected (N = 824). Among these 
subjects, (1) initially amyloid-positive subjects (N = 
373) and (2) subjects with a follow-up duration of less 
than 5 years without conversion to amyloid-positive 
(N = 222) were excluded. We excluded subjects with 
a short follow-up duration to avoid false-negative. The 
cutoff for follow-up duration was determined consid-
ering the reported mean follow-up time to conversion 
from Aβ (−) to Aβ (+) [16]. Finally, among the remain-
ing 229 subjects (135 CN, 92 mild cognitive impair-
ment (MCI), 2 dementia), we defined amyloid-negative 
subjects who converted positive within 5 years as con-
verters (N = 53) and subjects who remained amyloid-
negative for more than 5 years as non-converters (N = 
176) (Fig. 1a).

For validation of the prediction model, we recruited 
subjects who had longitudinal amyloid PET results from 
the in-house amyloid PET registry of Samsung Medical 
Center (SMC). A total of 356 subjects had longitudinal 
Centiloid (CL) data with follow-up duration longer than 6 
months, of which 135 were initially Aβ (−). We excluded 
a subject with a single follow-up visit 8.7 years from the 
baseline because the long gap between the visits made 
it difficult to assume the conversion time. After exclud-
ing 94 subjects with a follow-up duration of less than 5 
years without conversion of Aβ positivity, 40 subjects 
(6 CN, 28 MCI, 6 dementia) consisting of 10 converters 
and 30 non-converters were included in the final valida-
tion set (Fig.  1b). Because quantification of Aβ burden 
using the CL method is currently validated and applied 
only for global uptake data, we validated the prediction 
model using global SUVR. The institutional review board 
at SMC approved this study, and informed consent was 
obtained from the patients and caregivers.

http://www.adni-info.org
http://www.loni.usc.edu/ADNI/
http://www.loni.usc.edu/ADNI/
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Image data acquisition and amyloid PET preprocessing
For the analysis of ADNI data, we obtained global 
and regional 18F-florbetapir SUVR values from the 
UCBERKELEYAV45_11_16_21.csv table downloaded 
from the ADNI website (http:// adni. loni. usc. edu/). ADNI 
PET acquisition and processing protocols are described 
elsewhere (www. adni- info. org). Briefly, 18F-florbetapir 
images were co-registered to the MRI image of the sub-
ject using SPM8. Following co-registration, images were 
processed using a FreeSurfer pipeline, which includes 
skull stripping, segmentation, and delineation of corti-
cal and subcortical regions. Then, the volume-weighted 
florbetapir mean was extracted from each region and the 
resulting values were intensity normalized with respect 
to the whole cerebellum. We used 40 cortical regions (18 
frontal, 8 cingulate, 8 lateral parietal, and 6 lateral tempo-
ral regions) comprising cortical summary regions accord-
ing to AV45 processing methods available from the ADNI 
website for model development. To determine amyloid 
positivity, we used a whole cerebellum-referenced global 
SUVR cutoff of 1.11 [17].

SMC participants underwent 11C-Pittsburg compound 
B (PiB), 18F-Florbetaben (FBB), or 18F-Fluetemetamol 
(FMM) PET at Samsung Medical Center using a Discov-
ery STe PET/CT scanner (GE Medical Systems, Milwau-
kee, WI, USA). Following the protocols proposed by the 
ligand manufacturers, a 30-min emission PET scan 60 
min after the injection of a mean dose of 420MBq of PiB 
or a 20-min emission PET scan 90 min after the injec-
tion of a mean dose of 311.5 MBq of FBB or 185 MBq 
of FMM was performed. To harmonize uptake values 

across tracers, we calculated CL values based on previ-
ous studies regarding SUVR to CL conversion [18–20]. 
We followed the CL pipelines using SPM8, including co-
registration and normalization steps using the cortical 
target region (CTX-VOI) and the whole cerebellum mask 
for the reference region. The in-house implementation of 
the standard CL analysis was validated using the GAAIN 
PiB data website (http:// www. gaain. org). We found excel-
lent correlation between CL values  (CLSMC = 1.00 × 
 CLGAAIN − 0.08, R2 = 0.99) [21], showing our pipeline 
is valid within the acceptance criteria defined by Klunk 
et al. [18]. After extracting the SUVR values in CTX-VOI, 
we converted SUVR to CL using each tracer conversion 
equation (PiB: CL = 100 ×  (SUVRPiB – 1.009)/1.067, flor-
betaben: CL = 153.4 ×  SUVRFBB − 154.9, flutemetamol: 
CL = 121.42 ×  SUVRFMM − 121.16). We used a cutoff 
value of 20 CL, which was reported to be equivalent to 
FBP SUVR 1.11 [22], to determine the Aβ positivity of 
SMC subjects.

Deep‑learning models
We developed classifiers utilizing the ADNI dataset that 
predict the conversion of Aβ positivity within 5 years, 
which can be predicted by using baseline demographic 
and neuroimaging information. Three models with vari-
ous feature combinations were designed: Model 1 was 
trained with the features of age, gender, and APOE ε4 (3 
features). Model 2 was trained with features from Model 
1 combined with global SUVR (4 features). Model 3 
was trained with features from Model 2 combined with 
40 regional SUVRs (44 features in total). Categorical 

Fig. 1 Inclusion and exclusion of the study datasets. a Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. b Samsung Medical Center 
(SMC) dataset

http://adni.loni.usc.edu/
http://www.adni-info.org
http://www.gaain.org
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features that were converted to were set to 0 or 1, and 
numerical features were normalized with mean and 
standard deviation.

Artificial neural network-based models were developed 
using the PyTorch framework. For the development of 
the ANN model, we trained the model using the Adam 
optimizer [23], mean squared error loss function, and 
ReLU activation function; we also applied batch nor-
malization to prevent internal covariate shift [24]. The 
grid search approach was used to tune hyperparameters 
including learning rate, hidden node size, batch size, 
dropout rate, and weight decay. Stratified 10-fold cross-
validation was performed for each model by repeating 
the random train-validation set splitting 10 times. The 
models were trained for 100 epochs on graphical pro-
cessing units (GPUs; NVIDIA GTX 1080Ti).

Assessment of performance
The performances of the developed classifiers were 
assessed based on six different metrics: (1) the area 
under the curve of the receiver operating characteristic 
(AUROC) curve reflecting the sensitivity and specificity 
of model predictions; (2) the area under the precision-
recall curve (AUPRC), which is a useful performance 
metric for imbalanced data; (3) sensitivity; (4) specificity; 
(5) positive predictive value (PPV); and (6) negative pre-
dictive value (NPV). The 95% confidence intervals (CIs) 
of AUROCs and AUPRCs were calculated as well. The 
averaged values of AUROC and AUPRC were estimated 
by concatenating all prediction results of each test fold 
from total 10-fold cross-validation. Sensitivity, specific-
ity, PPV, and NPV values were determined using a clas-
sifier threshold of 0.5. After finalizing the model training 

with the ADNI dataset, external validation with the SMC 
dataset was performed by loading Model 2. Graphs for 
the results were plotted using the matplotlib package in 
Python 3.8.

Assessment of feature importance
Efforts to interpret machine learning models have been 
continued, and model-agnostic methods have been sug-
gested [25–27]. The feature importance in Model 3 was 
analyzed regarding model interpretability using the Cap-
tum Python library, which can describe internals in the 
PyTorch-based model [27]. Specifically, we applied the 
integrated gradient method to estimate the attributes of 
the prediction of an ANN with respect to certain inputs 
[28]. We averaged the attribution scores across the test 
sets to derive a representative value of the feature impor-
tance for comparison. For visualization of feature impor-
tance, we used the ggseg R package, which can visualize 
the Desikan-Killiany ROI-wise values.

Statistical analysis
We compared the characteristics of converters and non-
converters using Student’s t-test for continuous variables 
and the chi-square test for categorical variables. All tests 
were two-sided and considered statistically significant at 
p < 0.05. Statistical analyses were performed using the 
scipy package of Python 3.8.

Results
Clinical characteristics
Table  1 describes the characteristics of the clinical and 
PET results of converters and non-converters. A total of 
229 participants from the ADNI dataset were included 

Table 1 Clinical characteristics of β-amyloid positivity converters and non-converters

ADNI Alzheimer’s Disease Neuroimaging Initiative, SMC Samsung Medical Center, SD standard deviation, APOE ε4 apolipoprotein E ε4, SUVR standardized uptake value 
ratios, AD Alzheimer’s disease
† Comparisons between cohorts
a Values represent global SUVR in the ADNI dataset and global Centiloid in the SMC dataset

*Statistically significant (p < 0.05)

ADNI dataset SMC dataset p‑value†

Total Converter Nonconverter p‑value Total Converter Nonconverter p‑value

Subjects, N (%) 229 (100.0) 53 (23.1) 176 (75.1) - 40 (100.0) 10 (25.0) 30 (75.0) - -

Follow-up duration (years) 7.1 (1.7) 5.7 (2.2) 7.5 (1.3) <0.001* 6.1 (2.0) 3.9 (1.2) 6.7 (1.6) <0.001* <0.001*

Age, mean years (SD) 71.7 (7.3) 72.9 (6.8) 71.3 (7.5) 0.163 70.1 (7.7) 75.0 (8.1) 69.5 (7.3) 0.050 0.498

Female, N (%) 108 (47.2) 23 (43.4) 85 (48.3) 0.639 28 (68.3) 7 (70.0) 20 (67.7) 1.000 0.028*

APOE ε4 carriers, N (%) 54 (23.6) 20 (37.7) 34 (19.3) 0.010* 5 (12.5) 3 (30.0) 2 (6.7) 0.168 0.175

Education, years (SD) 16.5 (2.7) 16.6 (2.3) 16.5 (2.8) 0.813 9.0 (4.6) 11.2 (4.2) 8.3 (4.6) 0.087 <0.001*

Family history, N (%) 124 (54.1) 31 (58.4) 93 (52.8) 0.571 10 (24.4) 4 (40.0) 6 (19.4) 0.369 0.001*

Amyloid tracer  uptakea, 
mean (SD)

1.017 (0.054) 1.058 (0.039) 1.005 (0.052) <0.001* 3.377 (7.325) 12.052 (5.492) 0.088 (4.754) <0.001* -
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in model development. A total of 53 participants (23.1%) 
were converted to beta-amyloid-positive within 5 years, 
while 176 remained negative. Statistical tests underlined 
significant group differences in APOE ɛ4 carrier status 
and global SUVR (p < 0.05). With respect to SMC par-
ticipants, a total of 10 out of 40 subjects (25.0%) were 
converted to Aβ (+) within 5 years, while 30 subjects 
remained negative. Statistical tests highlighted significant 
group differences in age and global CL (p < 0.05).

Model performance
Table  2 reports the performances of each model. The 
AUROC and AUPRC after 10 times repeated 10-fold 
cross-validation were described in the mean and 95% 
CI. Model 3 with features of age, gender, APOE ɛ4 car-
rier, global SUVR, and regional SUVR demonstrated the 
highest mean performance of all models after repeated 
cross-validation: The mean AUROC was 0.841 (95% CI 
0.832–0.849) and the mean AUPRC was 0.627 (95% CI 
0.610–0.645). Sensitivity of 0.600 (95% CI 0.581–0.619), 
specificity of 0.869 (95% CI 0.862–0.875), PPV of 0.579 
(95% CI 0.562–0.597), and NPV of 0.878 (95% CI 0.873–
0.884) were obtained. The fitted hyperparameters at the 
highest performance were as follows: a first hidden layer 
of 256 nodes, a second hidden layer of 32 nodes, a batch 
size of 8, a learning rate of 0.0003, a dropout rate of 0.3, 
and a weight decay of 0.0001. The inclusion of family his-
tory as a predictor did not increase the model perfor-
mances (results not shown).

Model 2, which was trained with demographic and 
SUVR data, had a mean AUROC of 0.814 (95% CI 0.806–
0.821) and a mean AUPRC of 0.549 (95% CI 0.534–0.564). 
Model 1, trained without PET data, which included only 
age, gender, and APOE ɛ4, showed a mean AUROC of 
0.674 (95% CI 0.666–0.683) and mean AUPRC of 0.374 
(95% CI 0.364–0.384). AUROC curves of the three mod-
els are plotted in Fig. 2. DeLong test results showed that 
Model 3 had higher AUROC than Model 2 (p = 0.003) 
or Model 1 (p < 0.001). The external validation results 
using the SMC dataset were as follows: AUROC of 0.900, 
AUPRC of 0.625, sensitivity of 1.000, specificity of 0.700, 
PPV of 0.526, and NPV of 1.000. All performance metrics 
are listed in Table 2.

Model interpretability
The feature attribution to the classifier output probability 
was estimated by loading the best-performing model for 
each fold in the experimental setup for model 3. Feature-
wise averaging of 10-fold results and sorting features pos-
itively contributing to the prediction of converters were 
performed. Accordingly, the top 12 features among those 
average values are presented in Table 3. The results show 
features contributing to the prediction of subjects as Aβ 
converters. The features highly contributing included 
global SUVR, APOE ɛ4 carrier status, regional SUVRs of 
the right pars triangularis, left lateral parietal cortex, and 
left frontal pole. The mean attribution scores are shown 
in Fig.  3. Overall, the medial and lateral parietal and 

Table 2 Beta-amyloid positivity classifier performances. Three different models were developed with different feature combinations

Measurements were described as averages and the 95% confidence interval of 10 times repeated 10-fold cross-validation with the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) dataset. The Samsung Medical Center (SMC) dataset was used for external validation to test the Model 2.

AUROC area under the receiver operating characteristic, AUPRC area under the precision-recall curve, CI confidence interval, PPV positive predictive value, NPV 
negative predictive value, ADNI Alzheimer’s Disease Neuroimaging Initiative, SMC Samsung Medical Center, APOE ε4 apolipoprotein E ε4, SUVR standardized uptake 
value ratio
a Numbers in parentheses indicate the total number of features used in each model

Dataset Model Featuresa AUROC (95% 
CI)

AUPRC (95% 
CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI)

A. ADNI (devel-
opment set)

Model 1 Age, gender, 
APOE ε4 carriers 
(3)

0.674 (0.666–
0.683)

0.374 (0.364–
0.384)

0.606 (0.595–
0.616)

0.692 (0.668–
0.715)

0.373 (0.355–
0.392)

0.853 
(0.849–0.858)

Model 2 Age, gender, 
APOE ε4 carriers, 
global SUVR (4)

0.814 (0.806–
0.821)

0.549 (0.534–
0.564)

0.744 (0.707–
0.780)

0.727 (0.690–
0.764)

0.454 (0.430–
0.478)

0.905 
(0.896–0.913)

Model 3 Age, gender, 
APOE ε4 carriers, 
global SUVR, 
regional SUVR 
(44)

0.841 (0.832–
0.849)

0.627 (0.610–
0.645)

0.600 (0.581–
0.619)

0.869 (0.862–
0.875)

0.579 (0.562–
0.597)

0.878 
(0.873–0.884)

B. SMC (external 
validation set)

Model 2 Age, gender, 
APOE ε4 carriers, 
global SUVR (4)

0.900 0.625 1.000 0.700 0.526 1.000
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frontal cortices, as well as superior temporal and cingu-
late cortices, exhibited high attribution scores.

Discussion
In this study, we developed classifiers that predicted the 
conversion of patient status from Aβ (−) to Aβ (+) using 
baseline information on demographics and neuroimaging 
test results from the ADNI database. The major findings 

of this study are as follows. First, the incidence of con-
version to amyloid positivity was 23.1% (53/229) within 5 
years. Second, age, gender, and APOE genotype, but not 
family history, were effective in predicting the conver-
sion to amyloid positivity. Finally, the prediction model, 
which consisted of age, gender, APOE genotype, and 
global SUVR, showed good accuracy (AUROC = 0.814). 
Furthermore, the addition of regional SUVR led to an 
improvement in the prediction performance (AUROC 
= 0.841). Our findings highlight the distinctive features 
that should be taken into consideration when select-
ing candidates for primary prevention treatment in CN 
individuals.

Our first major finding was that the incidence rate of 
conversion to amyloid positivity was 23.1% within 5 
years, as 53 out of 229 participants were Aβ converters. 
Our findings are consistent with those of the previous 
studies. Specifically, recent studies from different cohorts 
have reported the annual incidence of conversion to Aβ 
(+) among elderly Aβ (−) CN individuals, ranging from 
3.1 to 13% [29, 30]. Thus, approximately 20% of baseline 
Aβ (−) individuals converted to Aβ (+) status, suggesting 
that these individuals need to be considered candidates 
for primary prevention.

Age, gender, APOE genotype, and family history are 
well-known risk factors for amyloid positivity. However, 
in the present study, age, gender, and APOE genotype, 
but not family history, were predictive of conversion to 

Fig. 2 Receiver operating characteristic curves of three artificial neural network models that classify the β-amyloid positivity within 5 years. Mean 
curves of 10 times repeated 10-fold cross-validation are plotted. Each model included the following features for training with the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset: Model 1: age + gender + APOE ε4 carriers, Model 2: features from Model 1 + global SUVR, and 
Model 3: features from Model 2 + regional SUVR

Table 3 Features attributing to the classification of β-amyloid 
positivity conversion in Model 3

Aβ beta-amyloid, APOE ε4 apolipoprotein E ε4, SUVR standardized uptake value 
ratio

Feature Importance

Global SUVR 0.025

APOE e4 carrier 0.019

Right pars triangularis 0.016

Left superior parietal 0.016

Left inferior parietal 0.014

Left frontal pole 0.012

Right superior parietal 0.012

Left pars orbitalis 0.012

Right posterior cingulate 0.009

Left rostral middle frontal 0.008

Right pars opercularis 0.008

Right superior frontal 0.007
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amyloid positivity. Our findings are in line with previous 
studies reporting factors associated with the rate of Aβ 
accumulation, such as APOE genotype [29], age, and sex 
[16] in Aβ (−) individuals. However, our findings contra-
dict a previous study, which reported a lack of obvious 
differentiating demographic features between amyloid 
converters and non-converters [30]. The discrepancy 
could be attributed to the differences in study designs 
between the reference and the present study, given the 
limited follow-up (median imaging follow-up was 1.3 
years) and considerably smaller sample size of baseline 
Aβ (−) subjects (123 vs. 229).

Our third major finding was that the prediction model, 
which consists of age, gender, APOE genotype, and global 
SUVR, showed good performance (AUROC = 0.814). 
Note that despite being in the subthreshold range, the 
inclusion of global SUVR increased the performance. A 
few recent studies on longitudinal amyloid PET imaging 
have shown that the annual change rate of Aβ is bipha-
sic [6, 31, 32]. The deflection point of this biphasic curve 
is known to be higher than the Aβ threshold. In subjects 
with baseline SUVR lower than this deflection point, 
the rate of Aβ accumulation increases as the baseline 
SUVR increases. In line with this pattern, our findings 
showed that the relative proximity of global SUVR to 
the Aβ threshold is a crucial factor in the classification 
of Aβ (−) subjects into converters and non-converters. 
External validation with the model using demographic 

features and global SUVR showed excellent performance 
(AUROC = 0.900), which means that the developed 
model can be useful in the clinic by discerning candidates 
who might convert to Aβ (+).

Moreover, the addition of regional SUVR led to an 
improvement in the prediction performance (AUROC = 
0.841). This result is consistent with findings from pre-
vious studies that suggest that individuals with focal Aβ 
accumulation and negative global SUVR demonstrated 
early clinical and neuroimaging features of AD pro-
gression [33, 34]. Of note, the increased specificity and 
decreased sensitivity indicate that the model becomes 
more stringent with the incorporation of regional SUVR. 
It can be inferred that the model filters out subjects with 
high baseline SUVR but less risky regional uptake pat-
terns. However, this needs further validation in a dataset 
with regional uptake values available. The incorporation 
of regional SUVR values could provide a more detailed 
understanding of the relationship between regionally 
specific amyloid aggregation and amyloid-related neuro-
degenerative changes. In the present study, the combined 
model that used demographic features, global SUVR, 
and regional SUVR resulted in the best performance, 
suggesting a better capacity to predict the conversion of 
Aβ positivity compared to other models tested. To our 
knowledge, no studies have developed machine learn-
ing classifiers to predict amyloid conversion in Aβ (−) 
subjects.

Fig. 3 Visualization of feature importance using mean attribution scores
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This study identifies the list of highly influencing fea-
tures: global SUVR and APOE ɛ4 carrier status con-
tributed the most to the prediction of Aβ conversion, 
followed by regional SUVRs in the medial and lateral 
parietal, medial and lateral frontal, and cingulate cortices. 
Our results are in line with previous studies on the early 
involvement pattern of cortical Aβ accumulation [35]. 
Thus, our model is likely to capture early AD patterns of 
amyloid PET.

Overall, the model developed in this study was able to 
predict the conversion of Aβ positivity in Aβ (−) sub-
jects. The model performance improved with the inclu-
sion of global and regional SUVRs and achieved good 
performance, which was validated in an independent 
dataset.

Limitations
A few limitations of our study need to be noted. First, 
the sample sizes of the datasets used in our study were 
modest. In fact, the ADNI is the cohort with the largest 
number of longitudinal amyloid PET data. However, the 
SMC dataset had a smaller number of eligible subjects 
especially when limited to initially negative subjects who 
had longitudinal PET data. Despite the limitations of the 
sample size, we were able to validate our results. Accu-
mulation of amyloid PET data, especially in amyloid-neg-
ative individuals, is needed for a more robust validation 
of our results. Second, while model 3 showed the best 
performance, the sensitivity and positive predictive value 
were relatively low. We can adjust the prediction score 
threshold of the neural network model to find a different 
balance between specificity and sensitivity depending on 
the purpose of the prediction model. In contrast to the 
results in the ADNI cohort, the specificity was relatively 
low in the SMC cohort. The difference may be attributed 
to the smaller number of subjects or differences between 
the cohorts, such as ethnicity, gender, educational attain-
ment, and family history. Since the false positivity may 
pose ethical challenges in applying the model in clinical 
trials, the prediction score threshold of the model may 
have to be adjusted in favor of specificity rather than 
sensitivity. More importantly, incorporating additional 
features such as neuropsychological test results, other 
neuroimaging phenotypes, or genetic factors is needed 
to improve the overall performance of the model. Third, 
we could not test the model including regional SUVR 
with the SMC dataset, although the model showed the 
best performance in the ADNI cohort. SMC subjects 
were recruited from a PET registry comprising amyloid 
PET scans of three different tracers, which forced us to 
use the CL method for harmonization. Unfortunately, 
the application of the CL method for regional uptake has 
not yet been validated. Once the methodology regarding 

the regional application of the CL is validated, it needs 
to be tested. Fourth, we used CL values to validate a 
model developed using global SUVR values. While this 
was possible since CL values have a strong linear rela-
tionship with FBP SUVR [36], further validation studies 
with harmonized features are warranted. Nevertheless, it 
is noteworthy that we developed well-performing models 
for the prediction of Aβ conversion and found important 
features that should be considered for the selection of 
primary prevention of AD.

Conclusion
We developed prediction models for the prediction of 
Aβ positivity conversion, which showed good prediction 
performance and coherence with the previously known 
nature of Aβ pathology. With the growing recognition of 
the need for earlier intervention in AD, the results of this 
study are expected to contribute to the screening of early 
treatment candidates.
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